102 research outputs found

    Flux through Trehalose Synthase Flows from Trehalose to the Alpha Anomer of Maltose in Mycobacteria

    Get PDF
    SummaryTrehalose synthase (TreS) was thought to catalyze flux from maltose to trehalose, a precursor of essential trehalose mycolates in mycobacterial cell walls. However, we now show, using a genetic approach, that TreS is not required for trehalose biosynthesis in Mycobacterium smegmatis, whereas two alternative trehalose-biosynthetic pathways (OtsAB and TreYZ) are crucial. Consistent with this direction of flux, trehalose levels in Mycobacterium tuberculosis decreased when TreS was overexpressed. In addition, TreS was shown to interconvert the α anomer of maltose and trehalose using 1H and 19F-nuclear magnetic resonance spectroscopies using its normal substrates and deoxyfluoromaltose analogs, with the nonenzymatic mutarotation of α/ÎČ-maltose being slow. Therefore, flux through TreS in mycobacteria flows from trehalose to α-maltose, which is the appropriate anomer for maltose kinase of the GlgE α-glucan pathway, which in turn contributes to intracellular and/or capsular polysaccharide biosynthesis

    A temperature-sensitive Mycobacterium smegmatis glgE mutation leads to a loss of GlgE enzyme activity and thermostability and the accumulation of α-maltose-1-phosphate

    Get PDF
    Background: The bacterial GlgE pathway is the third known route to glycogen and is the only one present in mycobacteria. It contributes to the virulence of Mycobacterium tuberculosis. The involvement of GlgE in glycogen biosynthesis was discovered twenty years ago when the phenotype of a temperature-sensitive Mycobacterium smegmatis mutation was rescued by the glgE gene. The evidence at the time suggested glgE coded for a glucanase responsible for the hydrolysis of glycogen, in stark contrast with recent evidence showing GlgE to be a polymerase responsible for its biosynthesis. Methods: We reconstructed and examined the temperature-sensitive mutant and characterised the mutated GlgE enzyme. Results: The mutant strain accumulated the substrate for GlgE, α-maltose-1-phosphate, at the non-permissive temperature. The glycogen assay used in the original study was shown to give a false positive result with α-maltose-1-phosphate. The accumulation of α-maltose-1-phosphate was due to the lowering of the kcat of GlgE as well as a loss of stability 42 °C. The reported rescue of the phenotype by GarA could potentially involve an interaction with GlgE, but none was detected. Conclusions: We have been able to reconcile apparently contradictory observations and shed light on the basis for the phenotype of the temperature-sensitive mutation. General significance: This study highlights how the lowering of flux through the GlgE pathway can slow the growth mycobacteria

    PPE51 mediates uptake of trehalose across the mycomembrane of Mycobacterium tuberculosis

    Full text link
    The disaccharide trehalose is essential for viability of Mycobacterium tuberculosis, which synthesizes trehalose de novo but can also utilize exogenous trehalose. The mycobacterial cell wall encompasses two permeability barriers, the cytoplasmic membrane and the outer mycolic acid-containing mycomembrane. The ABC transporter LpqY-SugA-SugB-SugC has previously been demonstrated to mediate the specific uptake of trehalose across the cytoplasmic membrane. However, it is still unclear how the transport of trehalose molecules across the mycomembrane is mediated. In this study, we harnessed the antimycobacterial activity of the analogue 6-azido trehalose to select for spontaneous resistant M. tuberculosis mutants in a merodiploid strain harbouring two LpqY-SugA-SugB-SugC copies. Mutations mediating resistance to 6-azido trehalose mapped to the proline-proline-glutamate (PPE) family member PPE51 (Rv3136), which has recently been shown to be an integral mycomembrane protein involved in uptake of low-molecular weight compounds. A site-specific ppe51 gene deletion mutant of M. tuberculosis was unable to grow on trehalose as the sole carbon source. Furthermore, bioorthogonal labelling of the M. tuberculosis Δppe51 mutant incubated with 6-azido trehalose corroborated the impaired internalization. Taken together, the results indicate that the transport of trehalose and trehalose analogues across the mycomembrane of M. tuberculosis is exclusively mediated by PPE51

    The mycolic acid reductase Rv2509 has distinct structural motifs and is essential for growth in slow growing mycobacteria

    Get PDF
    The final step in mycolic acid biosynthesis in Mycobacterium tuberculosis is catalysed by a mycolyl reductase encoded by the Rv2509 gene. Sequence analysis and homology modelling indicates that Rv2509 belongs to the short‐chain fatty acid dehydrogenase/reductase (SDR) family, but with some distinct features that warrant its classification as belonging to a novel family of short‐chain dehydrogenases. In particular, the predicted structure revealed a unique α‐helical C‐terminal region which we demonstrated to be essential for Rv2509 function, though this region did not seem to play any role in protein stabilisation or oligomerisation. We also show that unlike the M. smegmatis homologue which was not essential for growth, Rv2509 was an essential gene in slow growing mycobacteria. A knockdown strain of the BCG2529, the Rv2509 homologue in Mycobacterium bovis BCG was unable to survive following conditional depletion of BCG2529. This conditional depletion also led to a reduction of mature mycolic acid production and accumulation of intermediates derived from 3‐oxo‐mycolate precursors. Our studies demonstrate novel features of the mycolyl reductase Rv2509 and outline its role in mycobacterial growth, highlighting its potential as a new target for therapies

    Interleukin-26 activates macrophages and facilitates killing of Mycobacterium tuberculosis

    Get PDF
    Tuberculosis-causing Mycobacterium tuberculosis (Mtb) is transmitted via airborne droplets followed by a primary infection of macrophages and dendritic cells. During the activation of host defence mechanisms also neutrophils and T helper 1 (TH1) and TH17 cells are recruited to the site of infection. The TH17 cell-derived interleukin (IL)-17 in turn induces the cathelicidin LL37 which shows direct antimycobacterial effects. Here, we investigated the role of IL-26, a TH1- and TH17-associated cytokine that exhibits antimicrobial activity. We found that both IL-26 mRNA and protein are strongly increased in tuberculous lymph nodes. Furthermore, IL-26 is able to directly kill Mtb and decrease the infection rate in macrophages. Binding of IL-26 to lipoarabinomannan might be one important mechanism in extracellular killing of Mtb. Macrophages and dendritic cells respond to IL-26 with secretion of tumor necrosis factor (TNF)-α and chemokines such as CCL20, CXCL2 and CXCL8. In dendritic cells but not in macrophages cytokine induction by IL-26 is partly mediated via Toll like receptor (TLR) 2. Taken together, IL-26 strengthens the defense against Mtb in two ways: firstly, directly due to its antimycobacterial properties and secondly indirectly by activating innate immune mechanisms

    Assembly of α-Glucan by GlgE and GlgB in Mycobacteria and Streptomycetes

    Get PDF
    Actinomycetes, such as mycobacteria and streptomycetes, synthesize α-glucan with α-1,4 linkages and α-1,6 branching to help evade immune responses and to store carbon. α-Glucan is thought to resemble glycogen except for having shorter constituent linear chains. However, the fine structure of α-glucan and how it can be defined by the maltosyl transferase GlgE and branching enzyme GlgB were not known. Using a combination of enzymolysis and mass spectrometry, we compared the properties of α-glucan isolated from actinomycetes with polymer synthesized in vitro by GlgE and GlgB. We now propose the following assembly mechanism. Polymer synthesis starts with GlgE and its donor substrate, α-maltose 1-phosphate, yielding a linear oligomer with a degree of polymerization (∌16) sufficient for GlgB to introduce a branch. Branching involves strictly intrachain transfer to generate a C chain (the only constituent chain to retain its reducing end), which now bears an A chain (a nonreducing end terminal branch that does not itself bear a branch). GlgE preferentially extends A chains allowing GlgB to act iteratively to generate new A chains emanating from B chains (nonterminal branches that themselves bear a branch). Although extension and branching occur primarily with A chains, the other chain types are sometimes extended and branched such that some B chains (and possibly C chains) bear more than one branch. This occurs less frequently in α-glucans than in classical glycogens. The very similar properties of cytosolic and capsular α-glucans from Mycobacterium tuberculosis imply GlgE and GlgB are sufficient to synthesize them both

    Trehalose-6-phosphate-mediated toxicity determines essentiality of OtsB2 in Mycobacterium tuberculosis in vitro and in mice

    Get PDF
    Trehalose biosynthesis is considered an attractive target for the development of antimicrobials against fungal, helminthic and bacterial pathogens including Mycobacterium tuberculosis. The most common biosynthetic route involves trehalose-6-phosphate (T6P) synthase OtsA and T6P phosphatase OtsB that generate trehalose from ADP/UDP-glucose and glucose-6-phosphate. In order to assess the drug target potential of T6P phosphatase, we generated a conditional mutant of M. tuberculosis allowing the regulated gene silencing of the T6P phosphatase gene otsB2. We found that otsB2 is essential for growth of M. tuberculosis in vitro as well as for the acute infection phase in mice following aerosol infection. By contrast, otsB2 is not essential for the chronic infection phase in mice, highlighting the substantial remodelling of trehalose metabolism during infection by M. tuberculosis. Blocking OtsB2 resulted in the accumulation of its substrate T6P, which appears to be toxic, leading to the self-poisoning of cells. Accordingly, blocking T6P production in a ΔotsA mutant abrogated otsB2 essentiality. T6P accumulation elicited a global upregulation of more than 800 genes, which might result from an increase in RNA stability implied by the enhanced neutralization of toxins exhibiting ribonuclease activity. Surprisingly, overlap with the stress response caused by the accumulation of another toxic sugar phosphate molecule, maltose-1-phosphate, was minimal. A genome-wide screen for synthetic lethal interactions with otsA identified numerous genes, revealing additional potential drug targets synergistic with OtsB2 suitable for combination therapies that would minimize the emergence of resistance to OtsB2 inhibitors

    Metabolic Network for the Biosynthesis of Intra- and Extracellular alpha-Glucans Required for Virulence of Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis synthesizes intra- and extracellular alpha-glucans that were believed to originate from separate pathways. The extracellular glucose polymer is the main constituent of the mycobacterial capsule that is thought to be involved in immune evasion and virulence. However, the role of the alpha-glucan capsule in pathogenesis has remained enigmatic due to an incomplete understanding of alpha-glucan biosynthetic pathways preventing the generation of capsule-deficient mutants. Three separate and potentially redundant pathways had been implicated in alpha-glucan biosynthesis in mycobacteria: the GlgC-GlgA, the Rv3032 and the TreS-Pep2-GlgE pathways. We now show that alpha-glucan in mycobacteria is exclusively assembled intracellularly utilizing the building block alpha-maltose-1-phosphate as the substrate for the maltosyltransferase GlgE, with subsequent branching of the polymer by the branching enzyme GlgB. Some alpha-glucan is exported to form the alpha-glucan capsule. There is an unexpected convergence of the TreS-Pep2 and GlgC-GlgA pathways that both generate alpha-maltose-1-phosphate. While the TreS-Pep2 route from trehalose was already known, we have now established that GlgA forms this phosphosugar from ADP-glucose and glucose 1-phosphate 1000-fold more efficiently than its hitherto described glycogen synthase activity. The two routes are connected by the common precursor ADPglucose, allowing compensatory flux from one route to the other. Having elucidated this unexpected configuration of the metabolic pathways underlying alpha-glucan biosynthesis in mycobacteria, an M. tuberculosis double mutant devoid of alpha-glucan could be constructed, showing a direct link between the GlgE pathway, alpha-glucan biosynthesis and virulence in a mouse infection model

    Studies of a Ring-Cleaving Dioxygenase Illuminate the Role of Cholesterol Metabolism in the Pathogenesis of Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis, the etiological agent of TB, possesses a cholesterol catabolic pathway implicated in pathogenesis. This pathway includes an iron-dependent extradiol dioxygenase, HsaC, that cleaves catechols. Immuno-compromised mice infected with a ΔhsaC mutant of M. tuberculosis H37Rv survived 50% longer than mice infected with the wild-type strain. In guinea pigs, the mutant disseminated more slowly to the spleen, persisted less successfully in the lung, and caused little pathology. These data establish that, while cholesterol metabolism by M. tuberculosis appears to be most important during the chronic stage of infection, it begins much earlier and may contribute to the pathogen's dissemination within the host. Purified HsaC efficiently cleaved the catecholic cholesterol metabolite, DHSA (3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione; kcat/Km = 14.4±0.5 ”M−1 s−1), and was inactivated by a halogenated substrate analogue (partition coefficient<50). Remarkably, cholesterol caused loss of viability in the ΔhsaC mutant, consistent with catechol toxicity. Structures of HsaC:DHSA binary complexes at 2.1 Å revealed two catechol-binding modes: bidentate binding to the active site iron, as has been reported in similar enzymes, and, unexpectedly, monodentate binding. The position of the bicyclo-alkanone moiety of DHSA was very similar in the two binding modes, suggesting that this interaction is a determinant in the initial substrate-binding event. These data provide insights into the binding of catechols by extradiol dioxygenases and facilitate inhibitor design
    • 

    corecore